Selasa, 04 September 2012

Alat-Alat Instrumentasi Kimia Organik


1.      Spektroskopi UV-VIS
a.   Pendahuluan
Analisis Spektroskopi didasarkan pada interaksi radiasi dengan spesies kimia. Berprinsip pada penggunaan cahaya/tenaga magnek atau listrik untuk mempengaruhi senyawa kimia sehingga menimbulkan tanggapan.Tanggapan tersebut dapat diukur untuk menetukan jumlah atau jenis senyawa. Cara interaksi dengan suatu sampel dapat dengan absorpsi, pemendaran (luminenscence) emisi, dan penghamburan (scattering) tergantung pada sifat materi.Teknik spektroskopi meliputi spektroskopi UV-Vis, spektroskopi serapan atom, spektroskopi infra merah, spektroskopi fluorensi, spektroskopi NMR, spektroskopi massa.
Spektroskopi UV-Vis merupakan teknik spektroskopi pada daerah ultra violet dan sinar tampak. Dari spektrum absorpsi dapat diketahui panjang gelombang dengan absorbans maksimum dari suatu unsur atau senyawa. Contoh : Analisis protein, asam amino, kinetika enzim. Pada prinsipnya spektroskopi UV-Vis menggunakan cahaya sebagai tenaga yang mempengaruhi substansi senyawa kimia sehingga menimbulkan cahaya.Cahaya yang digunakan merupakan foton yang bergetar dan menjalar secara lurus dan merupakan tenaga listrik dan magnet yang keduanya saling tagak lurus. Tenaga foton bila mmepengaruhi senyawa kimia, maka akan menimbulkan tanggapan (respon), sedangkan respon yang timbul untuk senyawa organik ini hanya respon fisika atau Physical event. Tetapi bila sampai menguraikan senyawa kimia maka dapat terjadi peruraian senyawa tersebut menjadi molekul yang lebih kecil atau hanya menjadi radikal yang dinamakan peristiwa kimia atau Chemical event.
b.   Prinsip Kerja UV-Vis
Pada prinsipnya spektroskopi UV-Vis menggunakan cahaya sebagai tenaga yang mempengaruhi substansi senyawa kimia sehingga menimbulkan cahaya.Cahaya yang digunakan merupakan foton yang bergetar dan menjalar secara lurus dan merupakan tenaga listrik dan magnet yang keduanya saling tagak lurus. Tenaga foton bila mmepengaruhi senyawa kimia, maka akan menimbulkan tanggapan (respon), sedangkan respon yang timbul untuk senyawa organik ini hanya respon fisika atau Physical event. Tetapi bila sampai menguraikan senyawa kimia maka dapat terjadi peruraian senyawa tersebut menjadi molekul yang lebih kecil atau hanya menjadi radikal yang dinamakan peristiwa kimia atau Chemical event.
Spektroskopi UV-Vis digunakan untuk cairan berwarna. Sehingga sampel yang akan diidentifikasi harus diubah dalam senyawa kompleks. Analisis unsur berasal dari jaringan tanaman, hewan, manusia harus diubah dalam bentuk larutan, misalnya destruksi campuran asam (H2SO4+ HNO3 + HClO4) pada suhu tinggi. Larutan sample diperoleh dilakukan preparasi tahap berikutnya dengan pereaksi tertentu untuk memisahkan unsur satu dengan lainya, misal analisis Pb dengan ekstraksi dithizon pada pH tertentu. Sampel Pb direaksikan dengan amonium sitrat dan natriun fosfit, pH disesuaikan dengan penambahan amonium hidroksida kemudian ditambah KCN dan NH2OH.HCl dan ekstraksi dengan dithizon.
Gambar 4. Skema cara kerja UV-Vis

Cara kerja alat spektrofotometer UV-Vis yaitu sinar dari sumber radiasi diteruskan menuju monokromator, Cahaya dari monokromator diarahkan terpisah melalui sampel dengan sebuah cermin berotasi, Detektor menerima cahaya dari sampel secara bergantian secara berulang – ulang, Sinyal listrik dari detektor diproses, diubah ke digital dan dilihat hasilnya, perhitungan dilakukan dengan komputer yang sudah terprogram.

2.      Spektroskopi Inframerah

a.      Pengertian
Spektroskopi inframerah merupakan salah satu alat yang banyak dipakai untuk mengidentifikasi senyawa, baik alami maupun buatan. Dalam bidang fisika bahan, seperti bahan-bahan polimer, inframerah juga dipakai untuk mengkarakterisasi sampel. Suatu kendala yang menyulitkan dalam mengidentifikasi senyawa dengan inframerah adalah tidak adanya aturan yang baku untuk melakukan interpretasi spektrum. Karena kompleksnya interaksi dalam vibrasi molekul dalam suatu senyawa dan efek-efek eksternal yang sulit dikontrol seringkali prediksi teoretik tidak lagi sesuai. Pengetahuan dalam hal ini sebagian besar diperoleh secara empiris dan pengalaman.
b.   Prinsip Kerja
Prinsip dasarnya adalah radiasi inframerah pada suatu molekul senyawa sehingga pada tingkat energi tertentu ikatan molekul akan bervibrasi. Pada keadaan ini molekul berada pada keadaan vibrasi tereksitasi. Panjang gelombang absorbsi oleh suatu ikatan tertentu bergantung pada jenis getaran dari ikatan tersebut, sehingga tipe ikatan yang berlainan menyerap radiasi inframerah pada panang gelombang yang berlainan.
3.      NMR (Nuclear Magnetic Resonance)
a.   Pengertian
Sesuai dengan namanya, NMR (Nuclear Magnetic Resonance), spektroskopi NMR berhubungan dengan sifat magnet dari inti atom. Spektrometri NMR pada dasarnya merupakan spektrometri absorbsi, sebagaimana spektrometri infra merah maupun ultraviolet. Pada kondisi yang sesuai, suatu sampel dapat mengabsorpsi radiasi elektromagnetik daerah frekuensi radio, pada frekuensi yang tergantung dari sifat-sifat sampel.
b.   Prinsip Kerja
Bila sampel disinari dengan gelombang elektromagnetik ν yang berkaitan dengan perbedaan energi Description: D:\documenn\instrumen\materi 1\Spektroskopi NMR _ Chem-Is-Try.Org _ Situs Kimia Indonesia __files\delta.gifE, yakni,
Description: D:\documenn\instrumen\materi 1\Spektroskopi NMR _ Chem-Is-Try.Org _ Situs Kimia Indonesia __files\delta.gifE = hν
inti dalam keadaan (+) mengabsorbsi energi ini dan tereksitasi ke tingkat energi (-). Proses mengeksitasi inti dalam medan magnetik akan mengabsorbsi energi (resonansi) disebut nuclear magnetic resonance (NMR).
Seacara prinsip, frekuensi gelombang elektromagnetik yang diserap ditentukan oleh kekuatan magnet dan jenis inti yang diamati. Namun, perubahan kecil dalam frekuensi diinduksi oleh perbedaan lingkungan kimia tempat inti tersebut berada. Perubahan ini disebut pergeseran kimia.
Dalam spektroskopi 1H NMR, pergeseran kimia diungkapkan sebagai nilai relatif terhadap frekuensi absorpsi (0 Hz) tetrametilsilan standar (TMS) (CH3)4Si??ergeseran kimia tiga jenis proton dalam etanol CH3CH2OH adalah sekitar 105??25 dan 490 Hz bila direkam dengan spektrometer dengan magnet 2 1140 T (90 MHz) (Gambar 13.6(a))??arena frekuensi absorpsi proton adalah 0,9 x 108Hz (90 MHz), pergeseran kimia yang terlibat hanya bervariasi sangat kecil.
4.      Spektrometri Serapan Atom (SSA)
a.   Prinsip Kerja
Metode AAS berprinsip pada absorbsi cahaya oleh atom, atom-atom menyerap cahaya tersebut pada panjang gelombang tertentu, tergantung pada sifat unsurnya. Misalkan Natrium menyerap pada 589 nm, uranium pada 358,5 nm sedangkan kalium pada 766,5 nm. Cahaya pada gelombang ini mempunyai cukup energiuntukmengubah tingkat energy elektronik suatu atom. Dengan absorpsi energy, berarti memperoleh lebih banyak energy, suatu atom pada keadaan dasar dinaikkan tingkat energinya ke tingkat eksitasi. Tingkat-tingkat eksitasinya pun bermacam-macam. Misalnya unsur Na dengan noor atom 11 mempunyai konfigurasi electron 1s1 2s2 2p6 3s1, tingkat dasar untuk electron valensi 3s, artinya tidak memiliki kelebihan energy. Elektronini dapat tereksitasi ketingkat 3p dengan energy 2,2 eV ataupun ketingkat 4p dengan energy 3,6 eV, masing-masing sesuai dengan panjang gelombang sebesar 589 nm dan 330 nm. Kita dapat memilih diantara panjang gelombang ini yang menghasilkan garis spectrum yang tajam dan dengan intensitas maksimum, yangdikenal dengan garis resonansi. Garis-garis lain yang bukan garis resonansi dapat berupa pita-pita lebar ataupun garis tidak berasal dari eksitasi tingkat dasar yang disebabkan proses atomisasinya.
Apabila cahaya dengan panjang gelombang tertentu dilewatkan pada suatu sel yang mengandung atom-atom bebas yang bersangkutan maka sebagian cahaya tersebut akan diserap dan intensitas penyerapan akan berbanding lurus dengan banyaknya atom bebas logam yang berada pada sel.
5.      XRD (X-RAY DIFFRACTION)
a.   Pengertian
XRD atau X-Ray Diffraction merupakan salah satu alat yang memanfaatkan prinsip tersebut dengan menggunakan metoda karakterisasi material yang paling tua dan paling sering digunakan hingga sekarang. Teknik ini digunakan untuk mengidentifikasi fasa kristalin dalam material dengan cara menentukan parameter struktur kisi serta untuk mendapatkan ukuran partikel. Bahan yang dianalisa adalah tanah halus, homogenized, dan rata-rata komposisi massal ditentukan.
b.      Prinsip Kerja
Dasar dari prinsip pendifraksian sinar X yaitu difraksi sinar-X terjadi pada hamburan elastis foton-foton sinar-X oleh atom dalam sebuah kisi periodik. Hamburan monokromatis sinar-X dalam fasa tersebut memberikan interferensi yang konstruktif. Dasar dari penggunaan difraksi sinar-X untuk mempelajari kisi kristal adalah berdasarkan persamaan Bragg:
n.λ = 2.d.sin θ ; n = 1,2,...
Berdasarkan persamaan Bragg, jika seberkas sinar-X di jatuhkan pada sampel kristal,maka bidang kristal itu akan membiaskan sinar-X yang memiliki panjang gelombang sama dengan jarak antar kisi dalam kristal tersebut. Sinar yang dibiaskan akan ditangkap oleh detektor kemudian diterjemahkan sebagai sebuah puncak difraksi. Makin banyak bidang kristal yang terdapat dalam sampel, makin kuat intensitas pembiasan yang dihasilkannya. Tiap puncak yang muncul pada pola XRD mewakili satu bidang kristal yang memiliki orientasi tertentu dalam sumbu tiga dimensi. Puncak-puncak yang didapatkan dari data pengukuran ini kemudian dicocokkan dengan standar difraksi sinar-X untuk hampir semua jenis material.
Prinsip kerja XRD secara umum adalah sebagai berikut : XRD terdiri dari tiga bagian utama, yaitu tabung sinar-X, tempat objek yang diteliti, dan detektor sinar X. Sinar X dihasilkan di tabung sinar X yang berisi katoda memanaskan filamen, sehingga menghasilkan elektron. Perbedaan tegangan menyebabkan percepatan elektron akan menembaki objek. Ketika elektron mempunyai tingkat energi yang tinggi dan menabrak elektron dalam objek sehingga dihasilkan pancaran sinar X. Objek dan detektor berputar untuk menangkap dan merekam intensitas refleksi sinar X. Detektor merekam dan memproses sinyal sinar X dan mengolahnya dalam bentuk grafik.
6.      SEM/EDX
a.   Prinsip Kerja

SEM mempunyai depth of field yang besar, yang dapat memfokus jumlah sampel yang lebih banyak pada satu waktu dan menghasilkan bayangan yang baik dari sampel tiga dimensi. SEM juga menghasilkan bayangan dengan resolusi tinggi, yang berarti mendekati bayangan yang dapat diuji dengan perbesaran tinggi. Kombinasinya adalah  perbesaran yang lebih tinggi, dark field, resolusi yang lebih besar, dan komposisi serta informasi kristallografi. Sem terdiri dari electron optic columb dan electron console. sampel sem ditempatkan pada specimen chamber  di dalam electron optic colomb dengan tingkat kevakuman yang tinggi yaitu sekitar 2 x 10-6 Trorr.
Sinar electron yang dihasilkan dari electron gun akan dialirkan hingga mengenai sampel. Aliran sinar electron ini akan melewati optic columb yang berfungsi untuk memfokuskan sinar electron hingga mengenai sampel tersebut. Untuk mengetahui morfologi senyawa padatatan dan komposisi unsure yang terdapat dalam suatu senyawa dapat digunakan alat scanning electron microscope (SEM).  Scanning Electron Microscope adalah suatu tipe mikroskop electron yang menggambarkan permukaan sampel melalui proses scan dengan menggunakan pancaran energy yang tinggi dari electron dalam suatu pola scan raster. Electro berinteraksi dengan atom – atom yang membuat sampel menghasilkan sinyal yang memberikan informasi mengenai permukaan topografi sampel, komposisi dan sifat – sifat lainnya seperti konduktivitas listrik.
Tipe sinyal yang dihasilkan oleh sem dapat meliputi electron secunder, sinar – X karakteristik dan cahaya (katoda luminisens). Sinyal terswebut dating dari hamburan electron dari permukaan unsure yang berintaraksi dengan sampel atau didekatkan permukaannya. Sem dapat menghasilkan gambar dengan resolusi yang tinggi dari suatu permukaan sampel, menangkap secara lengkap dengan ukuran sekitar 1 – 5 nm. Agar menghasilkan gambar yang diinginkan maka SEM mempunya sebuah lebar focus yang sangat besar (biasanya 25 – 250.000 kali pembesaran). SEm dapat menghasilkan karakteristik bentuk 3 dimensi yang berguna untuk memahami struktur permukaan dari suatu sampel. (Hasrin, 2010)
Menurut Suriana bahwa data yang diperoleh dari hasil SEM – EDX dapat dianalisa baik secara kuantitatif maupun kualitatif, karena dari data yang diperoleh dapat diketahui enis atau unsure – unsure mineral yang terkandung dalam suatu sampel yang dianalisasi dan menginformasikan jumlah / proporsi dari tiap – tiap jenis mineral atau unsure yang diperoleh tersebut. Hasil dari SEM-EDX berupa gambar struktur permukaan dari sampel yang diperoleh dari analisis SEM dan grafik antara nilai energy dengan cacahan yang diperoleh dari analisis EDX.
7.      Spektroskopi Massa
a.      Pengertian
Spektometer massa adalah suatu instrumen yang dapat menyeleksi molekul-molekul gas bermuatan berdasarkan massa atau beratnya. Teknik ini tidak dapat dilakukan dengan spektroskopi, akan tetapi nama spektroskopi dipilih disebabkan persamaannya dengan pencatat fotografi dan spektrum garis optik. Umumnya spektrum massa diperoleh dengan mengubah senyawa suatu sampel menjadi ion-ion yang bergerak cepat yang dipisahkan berdasarkan perbandingan massa terhadap muatan.
b.      Prinsip Kerja
Merupakan suatu instrumen yang menghasilkan berkas ion dari suatu zat uji, memilah ion tersebut menjadi spektum yang sesuai dengan perbandingan massa terhadap muatan dan merekam kelimpahan relatif tiap jenis ion yang ada. Umumnya hanya ion positif yang dipelajari karena ion negatif yang dihasilkan dari sumber tumbukan umumnya sedikit.
Cara kerja spektrometer massa adalah sebagai berikut. Sampel dalam bentuk gas mula-mula ditembaki dengan berkas elektron berenergi tinggi. Pelakuan ini menyebabkan atom atau molekul sampel mengalami ionisasi (melepas elektron sehingga menjadi ion positif). Ion-ion positif ini kemudian dipercepat oleh suatu beda potensial dan diarahkan ke dalam suatu medan magnet melalui suatu celah sempit. Dalam medan magnet, ion-ion tersebut akan mengalami pembelokan yang bergantung pada:
1.      Kuat medan listrik yang mempercepat aliran ion. Makin besar potensial listrik yangdigunakan, makin besar kecepatan ion dan makin kecil pembelokan.
2.    Kuat medan magnet. Makin kuat magnet, makin besar pembelokan.
3.       Massa partikel (ion). Makin besar massa partikel, makin kecil pembelokan
4.       Muatan partikel. Makin besar muatan, makin besar pembelokan.

Tidak ada komentar:

Posting Komentar